
Propagation Matrices from the Finite Element Method

Bjørn R. Jensen† and Jan Linderberg* ,‡

Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah,
315 South 1400 East Rm Dock, Salt Lake City, Utah 84112-0850, and Department of Chemistry,
Aarhus UniVersity, DK-8000 Aarhus, Denmark

ReceiVed: June 7, 1999; In Final Form: August 24, 1999

Optimization of action integrals is suggested as an alternative to initial value algorithms for the study of
time-evolving quantum systems. The finite element method provides a convenient and rapidly convergent
scheme for some simple cases where analytical solutions are available. Two level systems are given particular
attention.

Introduction

Examination of the options offered by the finite element
method, as a means of estimating the evolution of quantum
mechanical systems, is the subject of this article. An action
integral is defined and its optimization provides an alternative
to time-stepping algorithms and provides a quadratic conver-
gence toward the accurate result. Thus, inaccuracies in a state
vector affect the propagator only in second order.

Molecular change, which is the essence of chemistry, derives
from quantum mechanics in the time domain. Approximate
solutions to Schro¨dinger’s and Liouville’s equations are desired,
and a rich literature has evolved on different algorithms. Kosloff
reviewed the field well in 19881 and later developments are
represented in this issue, so no attempt is made here to create
a survey of the methods favored at this time. An algorithm based
on the time-integrated Lagrangian formulation2 was suggested
in 19923 as a means of effective application of the finite element
method and is reconsidered here in further detail and with
additional results on convergence properties and computational
feasibility.

The action integral and the basics of the finite element method
representation are presented in the next section. There follows
a section with a few elementary results and a fourth section
with application to a two-level problem as in a spin resonance
situation. Conclusions are given in the last section.

Action Integral

Schrödinger’s picture with a time-dependent state vector,|Ψ-
(t)〉, will be used and the symmetrized Lagrangian is formed as

so that the action integralS, with the boundary terms will be

Auxiliary vectors|Λ〉 serve to define the evolution operatorU.
The variations of the actionS and conditions of stationarity
imply the equations

that are the standard ones.
It will be assumed that an approximate state vector is defined

in terms of parameters, which are functions of time. A common
form is the linear one where a fixed basis in the relevant Hilbert
space is used

More involved are the forms where the state vector depends on
general parameters

such as the coherent state representations used by O¨ hrn and
collaborators.4

We consider first the linear case and introduce a finite element
representation for the time dependence of the amplitudesaj(t)
in terms of their values at a discrete set of times:

where the form functions5 are localized on a few intervals which
may have varying lengths. The set of amplitudes{aj(tk)} are
the variational parameters of the problem together with ampli-
tudes of the auxiliary states at the beginning and end of the
time interval

The actionS becomes a sesquilinear form
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L(t) ) ip
2〈Ψ(t)|∂Ψ(t)

∂t 〉 - ip
2〈∂Ψ(t)

∂t |Ψ(t)〉 -

〈Ψ(t)|H(t)|Ψ(t)〉 (1)

S(Ψ,Λ) ) ∫0

T
dtL(t) + ip

2
{〈Ψ(T)|ΛT〉 - 〈ΛT|Ψ(T)〉 -

〈Ψ(0)|Λ0〉 + 〈Λ0|Ψ(0)〉 + 〈ΛT|U|Λ0〉 - 〈Λ0|U†|ΛT〉} (2)

ip
∂

∂t
|Ψ(t)〉 - H|Ψ(t)〉 ) 0

|Ψ(0)〉 ) |Λ0〉 |Ψ(T)〉 ) |ΛT〉

|Ψ(T)〉 ) U|Λ0〉 |Ψ(0)〉 ) U†|ΛT〉 (3)

|Ψ(t)〉 ) ∑j|j〉aj(t) (4)

|Ψ[t;R1(t),R2(t),...]〉 (5)

aj(t) ) ∑kaj(tk)fk(t) fk(tk′) ) δkk′

0 ) t0 < t1 < ... < tn ) T (6)

|Λτ〉 ) ∑j|j〉bjτ τ ) 0,T (7)
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and optimization results in a matrix problem. The detailed
equations are

Matrix elementsAjk,j′k′ andUjj ′ are complex and the matricesA
and U are hermitian and unitary, respectively. It has been
implicit that the basis is orthonormal.

Elimination of the amplitudes at intermediate times from eq
9 reduces the system to a form that, in matrix notation, reads
as

where the reduced matrices refer only to the initial and final
times. A satisfactory, partial solution to this problem is obtained
by looking for eigenvectors of the unitary transformation

so that

which implies the eigenvalue equation

The reduced matrixÃ is hermitian and its off-diagonal block
Ã0n is assumed to have an inverse; a singularity would indicate
a linear dependence in the basis.

Eigenvalues of the matrix6

have unit modulus,|zj| ) 1, or come in pairs,zj
/ ) zk

-1, since
the inverse ofT is related to its adjoint through a similarity
transformation

This implies that for a solution to eq 13

it holds that

or, equivalently

Two possibilities arise from this relation: (i)zj
/ ) zj

-1 where
a “normalization” can be chosen so that

and (ii) zj
/ ) zpj

-1 wherepj indicates a permutation of the set of
indices and where we choose the “normalization” such that

It is recognized that these eigenvalues are spurious in the sense
that their magnitude differs from unity and cannot correspond
to proper values of a unitary matrix. Their occurrence is related
to large time steps in the finite element discretization. A form
of orthogonality holds for eigenvalues that are unrelated

The case of degenerate eigenvalues offers the possibility that
there are two or more linearly independent vectors in the
subspace, but there will be a linear transformation among them
which brings them to the fulfill the conditions of eqs 19-21.

There are twice as many eigenvalues ofT as there are of the
unitary transformationU. Vectorsa0,b0 represent approximations
to an initial state and should be close to parallel, thus we choose
those solutions which have a positive “normalization” value in
relation (eq 19) as being the ones giving the appropriate
representation forU. Solutions of the type considered in eq 20
require a reconsideration of the procedure from the start. We
will first establish the relation between the vectors{a0j,b0j|j )
1,2...} and conclude, from the set of eq 10 that

and that

which provides the relations

and the conclusion

T† ) [0 1
1 0]T-1[0 1

1 0] (15)

T[a0

b0]) [a0

b0]z (16)

T†[b0

a0 ]) [0 1
1 0]T-1[a0

b0]) [b0

a0 ]1z

[b0
† a0

† ]T ) 1
z*

[b0
† a0

† ] (18)

b0j
† a0j + a0j

† b0j ) (2 (19)

b0j
† a0pj + a0j

† b0pj ) b0pj
† a0j + a0pj

† b0j ) 2 (20)

b0j
† a0k + a0j

† b0k ) 0 zk
/ * zj

-1 (21)

Ã00a0j + Ã0nb0jzj ) ip
2

b0j Ãn0a0j + Ãnnb0jzj ) - ip
2

a0jzj

(22)

a0k
† Ã00 + zk

/b0k
† Ãn0 ) - ip

2
b0k

† a0k
† Ã0n + zk

/b0k
† Ãnn ) ip

2
zk
/ a0k

†

(23)

a0k
† Ã00a0j + zk

/b0k
† Ãn0a0j + a0k

† Ã0nb0jzj + zk
/b0k

† Ãnnb0jzj )

ipδkj - ip
2

b0k
† a0j(1 + zk

/zj) (24)

S) ∑jkj′k′aj
/(tk)Ajk,j′k′aj′(tk′) + ip

2∑j[aj
/(T)bjT - bjT

/ aj(T) -

aj
/(0)bj0 + bj0

/ aj(0)] + ip
2∑jj ′[bjT

/ Ujj ′bj′0 - bj0
/ Ujj ′

† bj′T] (8)

∑j′k′Ajk,j′k′aj′(tk′) ) {ip
2

bj0, tk ) 0,

0, 0< tk < T,

- ip
2

bjT, tk ) T

(9)

aj(0) ) ∑j′Ujj ′
† bj′T

aj(T) ) ∑j′Ujj ′bj′0

Ã00a0 + Ã0nan ) ip
2

b0; Ãn0a0 + Ãnnan ) - ip
2

bn;

a0 ) U†bn; an ) Ub0;
(10)

Ub0 ) b0z U†bn ) bnz* ) bn(1z) (11)

Ã00a0 + Ã0nb0z ) ip
2

b0 Ãn0a0 + Ãnnb0z ) - ip
2

a0z (12)

[2i
p

Ãn0 0

2i
p

Ã00 1][a0

b0]) [1 - 2i
p

Ãnn

0 - 2i
p

Ã0n][a0

b0]z (13)

T ) [1 - 2i
p

Ãnn

0 - 2i
p

Ã0n]-1[2i
p

Ãn0 0

2i
p

Ã00 1])

[1 2i
p

Ãnn

0 1 ][2i
p

Ãn0 0

0
ip
2

Ã0n
-1][1 0

2i
p

Ã00 1] (14)
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where the new, hermitian matrixL is a transformation of the
hermitian matrixA. Neither set of vectors,{a0j|j ) 1,2...} nor
{b0j|j ) 1,2...}, is an orthogonal basis set for the unitary
transformation nor are they normalized.

A constrained optimization is required in order to arrive at
an acceptable representation of the propagation matrixU. It is
necessary to make the vectorsa0 andb0 of eq 13 proportional
to a common one

and use the consistency of the two components of the equation
to determine the ratio ofκ to λ. The constraints (eq 26) lead in
the system (eq 10), with substitutions (eq 11), to the forms

which are combined to the hermitian eigenvalue relation

Only the ratioκ/λ is relevant, and we replaceλ with µ according
to

to obtain

which exhibits the relation between the phase of the unitary
matrix eigenvalue and an eigenvalue of a suitably time-
integrated Lagrangian. It is seen that only the phase of the
productκ*µ and one of the magnitudes|κ| or |µ| are numerically
relevant. Thus it is convenient to choose

Eigenvalues of the matrix on the left-hand side in eq 30 will be
functions of the two real parameters and are denoted assj(κ,µ)
and it follows that

and, with properly normalized eigenvectors, the propagation
matrix is

while there remains to resolve the appropriate values of the
parametersκ andµ.

Optimal choices of the parameters will be studied further as
more numerical experience is acquired.

Integrable Examples

Two cases are examined with the view of showing the
numerical stability and accuracy of the variational formulation
in the finite element implementation. The evolution of a single

state under a constant or periodic Hamiltonian is governed by
the energy function

so that the evolution operator is

The static case is the limit at zero frequencyω. All integrals in
the action integral are elementary, and the matrix problem for
the wave function amplitudes is tridiagonal and readily solvable.

We show in Figure 1 a comparison of three approximations
to the phase of the evolution matrix for a constant energy state
and the accurate result: a linear interpolant over the interval,
two pieces of linear, and a parabolic interpolant. All are quite
accurate as long asæ ≡ |E(0)t|/p < 0.5 and there is no advantage
to the more elaborate approximations for larger intervals even
though an error analysis shows that for smallæ errors occur in
third, fifth, and seventh order, respectively. One pays for the
accuracy at small intervals by decreasing the range of ap-
plicability of the formulation; the analytical solutions have
branch points for smaller parameter values for the higher order
forms.

Numerical calculations have been carried out for the oscil-
latory form (eq 34) and the results are given in Figure 2.
Parameters and units are chosen so thatE(0) ) pω and
integrations are for the interval where 0e ωt e 5. Piecewise
linear approximations are used on equidistant intervals. Rapid
convergence is observed with the number of time steps. These
findings hold for longer time lapses, and there is no propagation
of errors as might be the case in finite difference stepping of
an initial value; the variational formulation optimizes the
propagator and not the wave function.

A Matrix Propagator

Additional complications arise in a system with several states
as is evident from the formal development. An examination of
a two-state system is facilitated by the use of the Pauli spin
matrix basis and we express the Hamiltonian as

b0k
† a0j ) δkj + iLkj; Lkj ) Ljk

/ (25)

a0 ) c0κ b0 ) c0λ (26)

(Ã00κ + Ã0nλz)c0 ) ip
2

λc0 (Ãn0κ + Ãnnλz)c0 ) - ip
2
κzc0

(27)

(κ* Ã00κ + κ* Ã0nλz + z*λ* Ãn0κ + z*λ* Ãnnλz)c0 )
ip
2

(κ*λ - z*λ*κz)c0 (28)

λz ) µ (29)

(κ* Ã00κ + κ* Ã0nµ + µ* Ãn0κ + µ* Ãnnµ)c0 )
ip
2

(κ*µz* - µ*κz)c0 (30)

|κ*µ| ) |κ||µ| ) 1 (31)

zj ) κ*µ
p

(xp2 - sj
2(κ,µ) + isj(κ,µ)) (32)

U ) ∑jc0jzjc0j
† (33)

Figure 1. Approximations to the evolution operator phase from finite
element method calculations for a constant energy case. The normal
line represents the correct result whereæ is proportional to the time
elapsed. Variational results are, from the top, for two pieces of linear
interpolation, parabolic interpolation, and the linear wave function
choice on the interval.

E(t) ) E(0) cos(ωt) (34)

U(t) ) U(0) exp[-
iE(0)
pω

sin(ωt)] (35)

H(t) ) R(t)σ0 + âx(t)σx + ây(t)σy + âz(t)σz )

[R(t) + âz(t) âx(t) - iây(t)
âx(t) + iây(t) R(t) - âz(t) ] (36)
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in terms of real functions of time. For simplicity we consider
only one interval with linear interpolants for the state vector

Time integration over the Hamiltonian results in the forms

where an additional notation is introduced. The relevant matrices
in eq 10 and the following are then

It cannot be assumed that the vectors{â(0), â(1), â(2)} are
parallel and thus there is no basis which diagonalizes all three
matrices (eq 39). The average action matrix, see eq 30, appears

as

where the average notation applies to all parameters. It follows
that the eigenvalues are

and the unitary transformation comes as

which can be reduced in the case of a constant Hamiltonian to
be of the similar form as the one state problem dealt with in
the previous section.

Conclusions

Development of variational methods in the time domain of
quantum mechanics promises effective numerical algorithms
when implemented in the finite element method framework. The
rather simple examples given in this article demonstrate the
feasibility of the approach and will be further exploited in the
context of control mechanisms as employed in magnetic
resonance experiments.7 Greater challenges are provided by the
chemical reactions where the single potential surface picture
breaks down and multistate propagation is required. Such
problems are on our agenda.
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(6) Löwdin, P. O.Linear Algebra for Quantum Theory,John Wiley &

Sons: New York, 1998; p 111 ff.
(7) Glaser, S. J.; Schulte-Herbru¨ggen, T.; Sieveking, M.; Schedletsky,

O.; Nielsen, N. C.; Sørensen. O.; Griesinger, C.Science1998, 280, 421.

Figure 2. Display of approach to the accurate evolution operator phase
value for the function (eq 35) with finite element method equidistant
interval length, upper panel, and number of intervals, lower panel for
total interval 0e ωt e 5.

Ψ(t) ) [a10(1 - t
T) + a11

t
T

a20(1 - t
T) + a21

t
T

] (37)

∫0

T
dtR(t)(1 - t

T)2-n( t
T)n ≡ R(n) n ) 0,1,2 (38)

A00 ) R(0)σ0 + âx(0)σx + ây(0)σy + âz(0)σz

A01 ) [R(1) + ip
2]σ0 + âx(1)σx + ây(1)σy + âz(1)σz (39)

A11 ) R(2)σ0 + âx(2)σx + ây(2)σy + âz(2)σz

A ) [Rj + psin(φ)]σ0 + âhxσx + âhyσy + âhzσz

Rj ) R(0)|κ|2 + 2R(1)cos(φ) + R(0)|κ|-2 (40)

κµ* ) cos(φ) + isin(φ)

s((κ,µ) ) Rj + psin(φ) ( |âh| (41)

U )
z+

2|âh|[|âh|σ0 + âh‚σ] +
z-

2|âh|[|âh|σ0 - âh‚σ] (42)

9478 J. Phys. Chem. A, Vol. 103, No. 47, 1999 Jensen and Linderberg


